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Abstract. We present a classical protocol for simulating correlations obtained by bipartite POVMs on an
EPR pair. The protocol uses shared random variables (also known as local hidden variables) augmented
by 5.7 bits of expected communication.

PACS. 03.65.Ud Entanglement and quantum nonlocality (e.g. EPR paradox, Bell’s inequalities, GHZ
states, etc.) – 03.67.Hk Quantum communication – 03.67.-a Quantum information

Entanglement simulation was first introduced by Maudlin
in a 1992 paper published in a philosophical journal [1]
and was revived independently by Brassard, Cleve and
Tapp in 1999 [2]. The objective was to quantify the non-
locality [3] of EPR pairs [4] in terms of the amount of
communication required to simulate the correlations ob-
tained by bipartite measurement of an EPR pair. “The
key to understanding violations of Bell’s inequality is not
operator algebras but information transmission [1].” This
approach increases our understanding of the relationships
between classical information and quantum information.
It also helps us gauge the amount of information hidden
in the EPR pair itself or, in some sense, the amount of in-
formation that must be space-like transmitted, in a local
hidden variable model, in order for nature to account for
the Bell inequalities.

In this scenario, Alice and Bob try to output a and b
respectively, through a classical protocol, with the same
probability distribution, hence correlations, as if they
shared an EPR pair and each measured his or her half
of the pair according to a given random von Neumann
measurement. In [2], a protocol using an infinite amount
of random shared variables and eight bits of communica-
tion in the worst case was given. Independently, Steiner [5]
presented a protocol using an infinite amount of random
shared variables and 1.48 bits of expected communication
for the simulation of von Neumann measurements in the
real plane. Surprisingly, Maudlin [1] already had a protocol
using random shared variables and 1.17 bits of expected
communication also to simulate von Neumann measure-
ments in the real plane. This later result was improved by
Cerf, Gisin and Massar [6] to 1.19 bits of expected com-
munication, still with an infinite amount of shared vari-
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ables, for arbitrary von Neumann measurements. They
were also able to generalize their protocol to simulate a
von Neumann measurement on Alice’s part of the EPR
pair and a POVM on Bob’s part with 6.38 bits of ex-
pected communication. It is straightforward to generalize
their result to bipartite POVMs with the same amount of
communication. Although both type of simulations, worst-
case and expected, used shared random variables so far, it
was shown by Massar et al. [7] that only protocols of the
worst-case communication type required shared random-
ness. In fact, when considering the simulation of quantum
entanglement with a protocol that uses a bounded amount
of communication, an infinite amount of shared variables
is needed. In [7], a protocol to simulate POVMs with
20 bits of expected communication, without any shared
randomness, was detailed. Subsequent refinements have
been made on the result of Brassard, Cleve and Tapp.
Csirik [8] proposed a protocol using only six bits of com-
munication and recently Toner and Bacon [9] presented
a protocol using only one bit of communication. For a
survey, one can be referred to [10].

In this paper, we present a protocol, based on [6,9],
to simulate arbitrary POVMs on both parts of an EPR
pair using 5.7 bits of expected communication and an in-
finite amount of random shared variables. First, we de-
scribe what a POVM is, what is the probability distri-
bution of the outputs if we actually make POVMs on a
|Ψ−〉 = (|01〉− |10〉)/√2 state and display some tools that
we will need for the protocol. Then a description of the
protocol is given followed by an analysis.

A POVM is a family of matrices {Bi} such that∑
A†

iAi =
∑

Bi = I, where Bi is called a POVM element.
On qubits, the POVM elements can be expressed, with-
out lost of generality, as the linear sum of one-dimensional
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Pr[a = i, b = j] =
|�ai||�bj |
4(4π)2

∫∫
d�v1d�v2Θ(−�bj · ((−1)c�v1 + (−1)d�v2))

=
|�ai||�bj |

8
− |�ai||�bj|

8(4π)2

∫∫
d�v1d�v2 sgn(�ai · �v1)sgn(�bj · (�v1 + sgn(�ai · �v1)sgn(�ai · �v2)�v2)) =

|�ai||�bj| − �ai ·�bj

8
.

(1)

projectors [6,11]. From the spectral decomposition, we
know that a POVM element can be written in the form
B =

∑
j bijPij , where bij are real constants and Pij are

projectors. We can then construct a new POVM with the
elements bijPij and say that if the outcome bijPij is cho-
sen that it is actually the outcome Bi that is produced. If
the spectral decomposition is not unique, we can include
a map from Bi to its rightful decomposition. With this
construction, we can focus only on POVMs with elements
proportional to projectors. Thus one can find vectors on
the Bloch sphere �bi such that Bi = (|�bi|I+�bi ·�σ)/2, where
�σ are the Pauli matrices and with the completeness con-
ditions

∑ |�bi| = 2 and
∑�bi = 0.

Let’s assume that Alice and Bob share a |Ψ−〉 state.
Alice receives the description of a POVM {Ai} and Bob
receives the description of a POVM {Bj}. If they each
measure their half of the |Ψ−〉 state according to their
description of the POVM, Alice will produce a = i with
probability Pr[a = i] = |�ai|/2, Bob will produce b = j

with probability Pr[b = j] = |�bj |/2 and the joint probabil-
ity will be Pr[a = i, b = j] = (|�ai||�bj| − �ai ·�bi)/4. Now let
us turn our attention to the presentation of the protocol.
The classical protocol (with 5.7 bits of expected commu-
nication) to simulate an arbitrary bipartite POVM on a
|φ+〉 can be described as follows:
• Alice and Bob share two random unit vectors �v1, �v2 ∈

R
3;

• Alice and Bob are given a description of their POVM
{Ai} and {Bi} respectively;

• Alice chooses the ith output of her POVM according
to the probability distribution Pr[a = i] = |�ai|/2;

• Alice sends c = Θ(−�ai ·�v1) and d = Θ(−�ai ·�v2), where

Θ(x) =

{
1 if x ≥ 0
0 if x < 0

;

• Bob chooses the jth output of his POVM according to
the probability distribution Pr[b = j] = |�bj|/2;

• Bob checks if −�bj · ((−1)c�v1 + (−1)d�v2) < 0, if so he
sends 0 to Alice and they start over with a fresh set of
random variables;

• otherwise, Bob sends 1 to Alice and they produce their
output i and j respectively.

The analysis of the protocol is quite simple. The probabil-
ity of Alice obtaining the POVM outcome i is, as stated,
Pr[a = i] = |�ai|/2. As for Bob’s marginal probability dis-
tribution, the vector (−1)c�v1 +(−1)d�v2 can be considered
as a vector pointing in a random direction. Therefore, Bob
has probability 1/2 of rejecting �bj. Since each time around
the probabilities are independent, Bob’s marginal proba-
bility is Pr[b = j] = |�bj |/2. For the joint probability distri-

bution, the calculation is a bit tricky but is still straight-
forward:

see equation (1) above.
The 1/2 factor in (1), is removed by renormalization
(which is allowed since all instances are independent from
one another) [6]. To realize the protocol Alice must send
two bits to Bob and Bob one bit to Alice. Since each round
is independent of the preceding ones and each has proba-
bility of 1/2 of ending the protocol, the protocol takes an
average of two rounds, hence 2(2+1) = 6 bits of expected
communication. If we are allowed block-coding, the com-
munication can be lowered. Alice still sends c to Bob, but
she can send d′ = Θ(�ai · �v1)⊕Θ(�ai · �v2) from which d can
be easily recovered. From [9], we know that d′ can be com-
pressed to an average of 0.85 bits [9]. The communication
then becomes 2(1 + 0.85 + 1) = 5.7 bits.

Although this result is a small improvement and a sim-
plification of the result in [6], much is left to do. We do
not know any way to simulate POVMs with worst-case
communication or even if it is possible to do so. While
von Neumann measurements can be done with worst-case
communication, it is not clear that the same can be done
for POVMs. Von Neumann measurements have only two
possible outcomes while POVMs have an unbounded num-
ber of outcomes. Can a protocol with a bounded amount
of communication choose correctly among an unbounded
number of outcomes? Can we generalize these types of
protocols to simulate arbitrary measurements on n EPR
pairs? GHZ and other entangled states?

We would like to thank Ben Toner, Gilles Brassard, Nicolas
Gisin and Alain Tapp for very helpful discussions and com-
ments, and Anne Broadbent and Valérie Poulin for helpful
comments on the manuscript.

References
1. T. Maudlin, PSA: Proc. Bienn. Meet. Philos. Sci. Ass. 1,

404 (1992)
2. G. Brassard, R. Cleve, A. Tapp, Phys. Rev. Lett. 83, 1874

(1999)
3. J.S. Bell, Physics 1, 195 (1964)
4. A. Einstein, B. Podolsky, N. Rosen, Phys. Rev. 47, 777

(1935)
5. M. Steiner, Phys. Lett. A 270, 239 (2000)
6. N. Cerf, N. Gisin, S. Massar, Phys. Rev. Lett. 84, 2521

(2000)
7. S. Massar, D. Bacon, N. Cerf, R. Cleve, Phys. Rev. A 63,

052305 (2001)
8. J.A. Csirik, Phys. Rev. A 66, 014302 (2002)
9. B.F. Toner, D. Bacon, arXiv:quant-ph/0304076

10. G. Brassard, arXiv:quant-ph/0101005
11. J. Barrett, Phys. Rev. A 65, 042302 (2002)


